The VoltDB Main MemoryDBMS

3/19/19

Presented by: Sushant Raikar

24 WATERLOO

Motivation

1990s 2010s Future
» Expensive main memory e Main memory is cheaper * 100TBscan be deployed in memory
» Slow processors « Faster processors « PCM

B WATERLGO

Traditional DBMS

= 10% of time is spent on useful work

= 90% is just overhead
= Buffer pool
= Multi-threading
= Locking
= Logging

OLTP Through the Looking Glass, and What We Found There

Daniel J. Abadi

Yale University
New Haven, CT

dna@cs.yale.edu

Stavros Harizopoulos
HP Labs
Palo Alto, CA

stavros@hp.com

ABSTRACT

Online Transaction Processing (OLTP) databases include a suite
of features — disk-resident B-trees and heap files, locking-based
concurrency control, support for multi-threading — that were
optimized for computer technology of the late 1970’s. Advances
in modern processors, memories, and networks mean that today’s
computers are vastly different from those of 30 years ago, such
that many OLTP databases will now fit in main memory, and
most OLTP transactions can be processed in milliseconds or less.
Yet database architecture has changed little.

Based on this observation, we look at some interesting variants of
conventional database systems that one might build that exploit
recent hardware trends, and speculate on their performance
through a detailed instruction-level breakdown of the major com-
ponents involved in a transaction processing database system
(Shore) running a subset of TPC-C. Rather than simply profiling
Shore, we progressively modified it so that after every feature
removal or optimization, we had a (faster) working system that
fully ran our workload. Overall, we identify overheads and opti-
mizations that explain a total difference of about a factor of 20x
in raw performance. We also show that there is no single “high
pole in the tent” in modern (memory resident) database systems,
but that substantial time is spent in logging, latching, locking, B-

Samuel Madden Michael Stonebraker

Massachusetts Institute of Technology
Cambridge, MA

{madden, stonebraker}@csail.mit.edu

1. INTRODUCTION

Modern general purpose online transaction processing (OLTP)
database systems include a standard suite of features: a collection
of on-disk data structures for table storage, including heap files
and B-trees, support for multiple concurrent queries via locking-
based concurrency control, log-based recovery, and an efficient
buffer manager. These features were developed to support trans-
action processing in the 1970’s and 1980’s, when an OLTP data-
base was many times larger than the main memory, and when the
computers that ran these databases cost hundreds of thousands to
millions of dollars.

Today, the situation is quite different. First, modern processors
are very fast, such that the computation time for many OLTP-
style transactions is measured in microseconds. For a few thou-
sand dollars, a system with gigabytes of main memory can be
purchased. Furthermore, it is not uncommon for institutions to
own networked clusters of many such workstations, with aggre-
gate memory measured in hundreds of gigabytes — sufficient to
keep many OLTP databases in RAM.

Second, the rise of the Internet, as well as the variety of data
intensive applications in use in a number of domains, has led to a
rising interest in database-like applications without the full suite

UNIVERSITY OF

%’ WATERLOO

VoltDB PAGE 3

ASSUMPTIONS

VoltDB PAGE 4

High Availability is necessary

ACID is necessary

Distribution of transactions

= Single-node
= One-shot

= General

Transactions are deterministic

voliDs AGE 5 %’ WATERLOO

= Clusters are deployed on LAN
= Network partitions are rare

= Better latency

= Replication over WAN

= Asynchronous

voliDs AGE § %’ WATERLOO

ARCHITECTURE

VoltDB PAGE 7

Client
Application

§ Procedure Name
i Input Parameters
\:‘—-" —----------------\

-

- e e

Txn Coordinator]

Core
Vo

Executlon Engine }[Execution Engme

Core

. J

Partition Main

Data Memory
B

Partition
Data

Wan oo an o an an an ar an G G G G G e e

s-----------------

B WATERLGO

VoltDB PAGE 9

= Used for managing pages
= Tracks dirty or clean pages

= Not required for in-memory systems
= Store data directly in memory

= Use virtual memory pointers

VoltDB PAGE 10 % WAV-IEE RTIIOFO

Multi-threading & Locking

= Multi-threading causes race condition.

= VoltDB uses Share-nothing architecture

= Memory chunk paired with single CPU

VoltDB PAGE 11 % WAV-IEE RTIIOFO

High Availability

ID | NAME SCORE
» Data is partitioned

| [

» Consistent Hashin | N

. LD | Alice 1.00 —

= Each partition is replicated | PARTITION#1 |

P P | ID | Bob 1.50 |

« K-factor | ~

: AN

| \/ ‘

| |

| ID | Charlie 30 oARTITION#2 | !

‘ \

| |

} ~

VoltDB PAGE 12 % WR,-IEESRITIIOOFO

Gonsistency

= Deterministic Transaction [Assumption]

= Uses “single partition initiator” to order
transactions

= Reads are added without SPI

VoltDB

© @® O

© ®

Y
N

PARTITION #1

N

Y
N

PARTITION #1

N~

PAGE 13

©
®)

SPI #1

@/
—

PARTITION #1
SERVER 1

~_

e
L

PARTITION #1
SERVER 2

~_

%’ WATERLOO

Consistency [Multi-nodel

= Queries that span multiple partitions
= Go through Multi-Partition initiator

« C->M->B

VoltDB

Y Y
o O
. ©

PARTITION #1 PARTITION #1

UNIVERSITY OF

WATERLOO

PAGE 14

= Global Errors

= Solution:
= Snapshot

= Logging

VoltDB PAGE 15 % WR,-IEESRITIIOOFO

@
®)

SPI#1

>
ol
(&

.~

A

N __>

SR{T
e o

e W S

VoltDB PAGE 16 % WAV-IEE RTIIOFO

PersistenceLogging]

(@)
©

b

UNIVERSITY OF

voltD aGE 17 %’ WATERLOO

Development Focusin 2013

= SQL
= On-Line Reprovisioning

= Downstream Repositories

Spark
&8 Kaifka i

VoltDB

PAGE 18

YOLTDB

%)

rrrrr

UNIVERSITY OF

WATERLOO

= High Speed updates

= Maintaining a state

= Internet Games, Leaderboards
= JOT

= High Frequency Trading

voltD aGE 15 %’ WATERLOO

= Voter Benchmark

= Obeyed assumptions
= Workload

= Vote a candidate

= Produce heat map for all states

= Produce leaderboard once a second
= Linear Scalability

= 5 —node system -> 0.6 million
transactions/second

= 30 node system -> 3.4 million
transactions/second

VoltDB PAGE 20 % WR,-IEESRITIIOOFO

SUMMARY

VoltDB PAGE 21

summary

Traditional Design on main memory can do 10% of useful work

No Buffer Pool

No Multithreading, hence no locking

Deterministic ordering

Logging and Snapshot

VoltDB PAGE 22 % WR,-IEESRITIIOOFO

TAKEAWAY

“One way to deal with a problem is to
not have it.”

VoltDB

VoltDB PAGE 23

THANKYOU

VoltDB PAGE 24

summary

TPC-Benchmark, indicates 10% of useful work

No Buffer Pool

No Multithreading, hence no locking

Deterministic ordering

Logging and Snapshot

VoltDB PAGE 25 % WAV-IEE RTIIOFO

How would you enforce deterministic transactions?

What will be the impact of non-volatile memory on VoltDB?

What could’ve been a better performance evaluation?

Can group-commits cause inconsistency?

Which point-of-view do you agree on, LeanStore (Buffer pool) VS VoltDB (No Buffer pool)?

VoltDB PAGE 26 % WAV-IEE RTIIOFO

